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ABSTRACT 

When forecasts for a major weather event begin days in advance, updates may be more 

accurate but inconsistent with the original forecast. Evidence suggests that resulting 

inconsistency may reduce user trust. However, adding an uncertainty estimate to the forecast 

may attenuate any loss of trust due to forecast inconsistency as has been shown with forecast 

inaccuracy. To evaluate this hypothesis, the experiment reported here, tested the impact on 

trust of adding probabilistic snow accumulation forecasts to single value forecasts in a series 

of original and revised forecast pairs (based on historical records) that varied in both 

consistency and accuracy. Participants rated their trust in the forecasts and used them to 

make school closure decisions.  Half of participants received single-value forecasts and half 

also received the probability of 6 or more inches (decision threshold in the assigned task).  As 

with previous research, forecast inaccuracy was detrimental to trust although probabilistic 

forecasts attenuated the effect. Moreover, the inclusion of probabilistic forecasts allowed 

participants to make economically better decisions. Surprisingly, in this study, inconsistency 

increased, rather than decreased trust, perhaps because it alerted participants to uncertainty 

and led them to make more cautious decisions. Furthermore, the positive effect of 

inconsistency on trust was enhanced by the inclusion of probabilistic forecast. This work has 

important implications for practical settings, suggesting that both probabilistic forecasts and 

forecast inconsistency provide useful information to decision makers.  Therefore, members of 

the public may well benefit from well-calibrated uncertainty estimates and newer, more 

reliable information. 

SIGNIFICANCE STATEMENT 

The purpose of this study was to clarify how explicit uncertainty information and forecast 

inconsistency impact trust and decision-making in the context of sequential forecasts from the 

same source.  This is important because trust is critical for effective risk communication.  In 

the absence of trust, people may not use available information, and subsequently may put 

themselves and others at greater than necessary risk.  Our results suggest that updating 

forecasts when newer, more reliable information is available, and providing reliable 

uncertainty estimates can support user trust and decision making.  

1. Introduction 
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Forecasts for major weather events often begin days in advance.  The weather models 

upon which forecasts are based update frequently and generally grow more accurate as lead 

times decrease (Lazo et al. 2009; Wilson and Giles 2013).  However, meteorologists are 

sometimes reluctant to update the forecasts provided to members of the public out of fear that 

inconsistency in subsequent forecasts will be confusing and negatively affect user trust. 

“Inconsistency” in this context means that the most recent forecast (e.g., 10 inches snow 

accumulation) differs from the previous forecast (e.g., 2 inches of snow accumulation) for the 

same target date (next Saturday). In fact, maintaining consistency in forecasts is considered 

best practice by some institutions, like the National Oceanic and Atmospheric Administration 

(NOAA 2016).  Yet, because forecasts tend to grow more accurate as lead time decreases, the 

choice to maintain consistency can be at a loss to accuracy (how closely the forecast matches 

the outcome).  

There is strong evidence that forecast inaccuracy reduces trust.  For instance, in a 

study in which participants used overnight low temperature forecasts to make road salting 

decisions, they rated trust significantly higher and took protective action more often with 

low-compared to high-error forecasts (Joslyn and LeClerc 2012).  Similarly, in a study in 

which participants used reports from financial analysts to make investment decisions, 

participants rated competence, trust, and likelihood of buying future reports higher for 

accurate compared to inaccurate financial analysts (Kadous, Mercer, and Thayer 2009).  

Also, compared to patients who imagined receiving accurate initial mammogram test results, 

those who imagined receiving false positive breast cancer test results, reported reduced trust 

and being more likely to delay future mammography (Kahn and Luce 2003).  Even 

preschoolers show reduced trust in inaccurate relative to accurate informants (Pasquini et al. 

2007; Ronfard and Lane 2018). 

By contrast, evidence on the effect of inconsistency in forecasts is sparce and comes 

largely from non-weather domains. For instance, consumers believe that consistency between 

two estimates from the same source is a signal of skill (Falk and Zimmermann, 2017).  There 

is also evidence that information about an event from multiple sources is preferred when it is 

in agreement as opposed to conflicting, all else being equal (Smithson, 1999). Moreover, 

confidence in one’s own decision is higher when based on information from financial 

advisors who agree with one another as opposed to those who do not agree (Budescu et al., 

2003). 
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There is also recent evidence, from our own lab, that speaks to the effect of 

inconsistency in predictions on trust and decision making.  For example, one study that 

manipulated forecast consistency in sequential thunderstorm and snow forecasts from a single 

source found that consistent (relative to inconsistent) forecasts led to greater trust (Losee and 

Joslyn 2018).  There is also research comparing the impact of inconsistency to that of 

inaccuracy, suggesting that sequential forecast inconsistency reduces user trust, but that 

inaccuracy has a larger negative effect on trust (Burgeno and Joslyn 2020). In these 

experiments, participants based their school closure decisions on snow accumulation 

forecasts (e.g., Monday forecast: 4 inches of snow on Wednesday) from a single source, 2-

days and 1-day in advance of an anticipated storm. Not only was inaccuracy more detrimental 

to trust in the forecast but inconsistency appeared to provide useful information. It increased 

participants’ uncertainty expectations, reflected in a wider range of expected outcomes, and 

led to more conservative closure decisions.  An inaccuracy by inconsistency interaction effect 

suggested that differences in trust due to inconsistency shrank when forecasts were 

inaccurate.  In other words, the reduction in trust due to inaccuracy was substantial to the 

extent that inconsistency had little additional impact.  

At least part of the reason that inconsistency is less detrimental to trust in sequential 

forecasts may be the fact that, when forecasts are inconsistent, people understand that the 

most recent forecasts is more likely to be more accurate and regard it as a replacement for an 

earlier forecast. Indeed, prior research on sequential forecasts suggests that participants’ best 

estimates were more heavily influenced by recent forecasts (1-day in advance) than initial 

forecasts (2-days in advance), suggesting that participants expected the most recent forecast 

to be more reliable and were weighting it more heavily (Burgeno and Joslyn 2020).  

The relative effects of inconsistency and inaccuracy have also been compared in an 

experiment based on snow forecasts from 2 different sources both provided at the same time, 

one day in advance of an anticipated storm. It revealed that while inaccuracy significantly 

reduced trust, inconsistency between the two sources did not (Su, Burgeno, and Joslyn 2021).  

In fact, participants incorporated information from both sources equally in their outcome 

estimates and appeared to glean useful information from inconsistencies.  As with 

inconsistent sequential forecasts (Burgeno and Joslyn 2020), inconsistencies led participants 

to infer greater uncertainty and to make more cautious decisions.  Therefore, inconsistency 

appears to be less problematic for trust than inaccuracy in both sequential forecasts coming 
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from the same source and simultaneous forecasts from different sources, and it may provide 

useful information.  

It is important to note that a particular kind of trust was measured in this line of work, 

referred to as “calculative trust”. There are at least two kinds of trust that could be affected, 

1) relational trust, representing the social bond between the trustor and the trustee, which is 

based on factors such as the forecast providers intentions, attitudes or goals and 2) calculative 

trust, sometimes called “confidence,” which is based on factors directly related to the quality 

of the forecast and derived from factors such as past performance (Siegrist, Gutscher and 

Earle 2005; Twyman, Harvey, and Harries 2008; Earle 2010). The kind of trust tested in the 

work reported below was also “calculative” trust. 

Although the research on inconsistency reviewed above is both important and 

foundational, it is crucial to note that in order to isolate the effects of inaccuracy and 

inconsistency, all of the experiments cited above from our own lab used highly controlled 

forecast stimuli, limiting the range of forecasts values and closely matching the degrees of 

inaccuracy and inconsistency at small amounts (about 2 inches). In other words, both 

inconsistency and the inaccuracy were essentially categorical variables (either inconsistent or 

consistent, either inaccurate or accurate). Moreover, exactly half of forecast pairs were 

inconsistent and the other half consistent. Similarly, exactly half of forecasts in each 

consistency category were inaccurate, and half were exactly accurate. That begs the question, 

will the same effects be observed in more realistic forecast situations in which forecasts vary 

naturally and take on a wider range of values? Indeed, the degree of inconsistency may be 

crucial. For instance, the impact on users may be greater if the snow accumulation forecast 

decreases from 7 to 1 inch compared to from 3 to 1 inch in the subsequent forecast. This may, 

in turn, translate into a greater impact on trust. Indeed, for some users, small inconsistencies 

may not be regarded as inconsistency all, but rather as an informative update. Larger 

inconsistencies, however, may have a qualitatively different impact. In addition, there may be 

relationships between forecast values, inconsistency and inaccuracy in actual forecasts that 

may also be relevant. The experiment reported here was designed to evaluate the relative 

impact on trust of forecast inconsistencies and inaccuracies that vary naturally and take on a 

wide range of values. 

The other question this work was designed to answer is whether there is a benefit to 

adding an uncertainty estimate to inconsistent forecasts. By “uncertainty estimate” in this 
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context we mean a probabilistic forecast (e.g., 30% chance) indicating the likelihood of a 

particular outcome. Although forecast inconsistency may reduce trust in some situations, it 

may be possible to preserve trust in the face of inconsistency by adding a probabilistic 

forecast as has been shown with inaccuracy. For example, in the road salting study (Joslyn 

and LeClerc 2012) mentioned above, probabilistic forecasts reduced the negative effects of 

forecast inaccuracy on both trust and decision making.  When provided the probability of 

observing temperatures at or below the decision threshold (in addition to single-value 

forecasts) participants rated trust higher than those who received single-value low 

temperature forecasts alone. There are likely two main reasons for this effect. First, the 

acknowledgment of uncertainty may make the forecast seem “less wrong” when it fails to 

verify, preserving trust in the face of forecast error. In addition, people have an intuitive 

understanding of the uncertainty inherent in weather forecasts, even when it is not specified 

(Savelli and Joslyn 2010). Therefore, a forecast that makes the uncertainty explicit may seem 

more honest in the first place. In addition, in these experiments (Joslyn and LeClerc 2012), 

participants made better decisions from an economic standpoint when they were provided 

with probabilistic forecasts. In another study, probabilistic forecasts preserved trust to a 

greater degree than did lowering false alarm rates. In addition, probabilistic forecasts 

increased compliance with weather warnings (LeClerc and Joslyn 2015).  In yet another set 

of studies, probabilistic forecasts added to flood warnings enhanced subjective understanding 

of flood likelihood and reduced recency biases compared to a return period expression (e.g., 

10-year flood) and to a no-information control group (Grounds, LeClerc, and Joslyn 2018). 

Thus, a growing body of evidence suggests that laypeople can use explicit probabilistic 

information and that it may offer several benefits in the decision-making process, not the 

least of which is preserving trust. Therefore, uncertainty estimates may attenuate the loss of 

trust due to forecast inconsistency. However, for these benefits to be observed, it may be 

necessary for probabilistic forecasts to be reliable. In one study (Experiment 1, Burgeno and 

Joslyn 2020) when targeted outcomes were observed 50% of the time regardless of the 

probability predicted, no effect of including probabilistic forecasts (compared to single value 

forecasts) was observed. Thus, the experiment reported here was designed to test whether 

including reliable, probabilistic forecasts preserves trust in the face of forecast inconsistency. 

In sum the experiment reported here was designed to test whether the reduction in 

trust due to forecast inconsistency extends to inconsistency values that vary naturally and if 

so, whether the reduction in trust is attenuated by including uncertainty estimates in the 
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forecast. It also tested the impact of these factors on participants own outcome estimates and 

decision quality. This experiment employs the school closure paradigm described above 

(Burgeno and Joslyn 2020). However, the new experiment reported below used entirely 

different, realistic forecast stimuli and was conducted two years later with a different group 

of participants than the previous studies. Participants’ goal was to decide, based on a 

sequence of snow forecasts taken from historical records, whether it was appropriate to close 

schools due to a snowstorm based on a 6-inch or more accumulation rule. Half of 

participants received probabilistic forecasts in addition to the single-value snow accumulation 

amount to determine the impact of probabilistic forecasts on trust and decision quality.    

We hypothesized that probabilistic forecasts would enhance trust and that 

inconsistency and inaccuracy would reduce trust. Furthermore, we hypothesized that 

probabilistic forecasts would attenuate the negative effects of forecast inconsistency and 

inaccuracy on trust and enhance decision quality. We predicted that inconsistency would be 

interpreted as indicating greater uncertainty in the forecast, reflected in a wider range of 

expected outcomes, and tested whether this would be affected by probabilistic forecasts. 

Finally, we hypothesized that more recent forecasts, in inconsistent pairs, would have a 

greater impact on participants’ accumulation estimates. Hypotheses were preregistered on 

Open Science Framework and can be viewed at https://osf.io/dv6j8. 

2. Method 

a. Participants 

A total of 419 University of Washington psychology students participated for course 

credit and the opportunity to earn a cash bonus. After executing data cleaning procedures 

(described below), data from 398 participants (62% female, mean age=19.5) remained and 

were included in the analyses below. 

b. Procedure 

Participants first gave informed consent and provided their age and gender. Next, they 

read and listened to, instructions spoken by the experimenter that explained the computer-
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based task1 (See Appendix A).  Participants were asked to advise schools on whether to close 

due to an anticipated snowstorm based on weather forecasts provided by “a private weather 

service that specializes in local predictions”. Although several factors are considered when 

actual closure decisions are made, in this simplified task, the decision was to be based upon 

snow accumulation alone.  Participants were instructed to advise closing if they expected six 

or more inches of snow accumulation.  Participants provided school closure advice for 65 

schools across the region for each of two hypothetical winter periods, for a total of 130 trials. 

Each week was described as involving a different school district to encourage participants to 

regard the trials as independent of one another. 

To better simulate actual weather-related decisions that have real consequences, a 

point system was used. Participants ending point balance was converted to cash at the 

conclusion of the experiment to encourage them to put forth their best effort. Participants 

began with a virtual budget of 332 points. Their goal was to retain as many points as possible. 

Closure recommendations cost 2 points to reflect the cost of makeup days. There was no 

cost for recommending that a school stay open; however, if participants advised staying open 

and six or more inches of snow was observed, they incurred a 6-point penalty to reflect the 

risk of accidents and injuries due to dangerous road conditions. Notice that, as with many 

real-world weather-related decisions, the cost of protection is less than the potential cost of 

the adverse weather event. 

Participants earned a cash bonus for the ending point balance at the rate of $1 for 

every 32 points over 72 (final balance) points.  A 72-point threshold was selected to 

discourage the simplistic and unrealistic strategy of recommending closure for every trial, 

which would result in a final balance at the payment threshold of 72 points2. In addition to 

1 The experiment was programed in Excel Visual Basic and conducted on standard desktop computers. 

2 The endowment was calculated by multiplying the number of trials (130) by the cost of closing (2 points), and 

adding that product to the payment threshold, (130*2) + 72=332.  This was done to create a cushion of points so 

maintain engagement with the task. 
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providing real consequences for the decisions made, this point system held constant the cost 

and the penalty across participants. In other words, unlike many real-life weather threats, for 

which the cost of protection or the vulnerability to consequences may be greater for some—in 

this context it was the same across participants reducing statistical noise and allowing us to 

better detect differences due to the forecasts alone. 

For every trial, participants based their school closure decision on two snow forecasts 

for Wednesday, one issued on Monday (two days prior to the event) and one on Tuesday (one 

day prior to the event). Forecasts were presented sequentially, centered on separate screens 

with the current weekday in the top left-hand corner in bold font. To determine how the 

forecasts influenced participants own estimates, participants were asked to report the number 

of inches of snow they expected for Wednesday as well as the least (minimum estimate, “as 

little as”) and greatest (maximum estimate, “as much as”) number of inches that they would 

not be surprised by. Then, participants rated their trust in the forecast, “to help them make 

their [school closure] decision” on a 6-point drop-down menu, from “Not at all” to 

“Completely”. Notice that this question asks participants to focus on the quality of the 

information itself, rather than the source of the information. See Appendix B for the exact 

wording of each question. The current point balance was displayed in the bottom left-hand 

corner of each screen. When participants completed all four questions, they clicked a “next” 

button in the bottom right-hand corner of the screen to progress to the next screen and could 

not go back and change responses on the previous screen.  Then, the second forecast was 

shown and participants answered the same four questions with respect the second forecast. 

Next, the decision screen appeared.  The current day (Tuesday) was displayed in bold font in 

the top left-hand corner and two buttons in the middle of the screen labeled “close” and “stay 

open.” Below each respective button was a reminder of the associated point cost and that 

“close” meant “I think snow accumulation will be 6 inches or more” whereas “stay open” 

meant “I think snow accumulation will be less than 6 inches”. 

9 

Accepted for publication in Weather, Climate, and Society. DOI 10.1175/WCAS-D-22-0064.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/28/23 06:52 PM UTC 



  

  

   

  

  

 

 

       

  

 

 

  

 

   

  

      

   

  

    

    

             

 

       

 

After submitting their school closure decision, a fourth screen appeared saying that 

the school followed their advice and either stayed open or closed.  The observed snow 

accumulation on Wednesday was displayed and the resulting cost or penalty was shown 

(unless neither occurred). Participants’ point balance and, if applicable, the penalty incurred, 

was displayed in the bottom left corner of the screen. Participants again rated their trust in 

the forecasts using the same pull-down menu.  In sum, each trial consisted of 4 screens: 1) 

Monday forecast for Wednesday, 2) Tuesday forecast for Wednesday, 3) Tuesday night 

school closure decision, and 4) Wednesday outcome. Then, the next trial began with a new 

set of forecasts and outcome that pertained to a school in a different district. Participants 

completed four practice trials before the test trials began (See Appendix A). 

c. Forecast Stimuli 

The data upon which the snow accumulation forecasts (48 and 24 hours in advance), 

probabilities of 6 or more inches accumulation and observed 24-hour snow accumulation 

outcomes were based, were obtained from the Eastern Region Headquarters of the National 

Oceanographic and Atmospheric Administration (NOAA). The original set of 160 forecasts 

pertained to a snowstorm that occurred in several locations over the eastern United States on 

February 9, 20173. In the experiment we used 130 of these, treating each pair of forecasts 

and outcome as a separate event. All single value forecasts and observed accumulation 

amounts were rounded to the nearest inch. Although some other small changes were made 

(described below), the vast majority of trials4 included original forecast values, and all 

outcome values were identical to the original historical forecast set. As a result, forecasts 

varied naturally in terms of snow accumulation totals, accuracy, and consistency. Moreover, 

the critical characteristics of the original forecast data set were maintained (See Appendix C). 

1) Consistency 

3 Special thanks go to David B. Radell at NOAA and the National Weather Service for providing us with 

the forecast data. 

4 68% were presented in the same order as in the historical forecast set 
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Consistency was defined as an exact match between the Monday and Tuesday 

forecasts.  All inconsistent trials were inconsistent by 1 or more inches with a range of -8 to 8 

inches and a mean of 2.86 inches.  Because the original data set had few exactly consistent 

pairs, they were increased by making slight changes to the second forecast in 9 pairs (7%) in 

which the initial differences were small.  The original cases pertained to a single weather 

event in which the expected accumulation increased over time, so there were very few 

descending forecast pairs (4%, N=7). This was problematic because some anecdotal 

evidence5 suggests that downgraded forecasts (descending in this case) are more likely to be 

altered to maintain consistency by forecasters.  Therefore, we increased the proportion of 

descending forecasts by flipping the order of 19 inconsistent forecast pairs. As a result, in 

the forecast set used here, 40 (61%) of the inconsistent trials were ascending (values 

increased from first to second forecast) and the remaining 26 (39%) were descending (values 

decreased from first to second forecast). 

2) Accuracy 

Accuracy was gauged relative to the second (Tuesday) forecast.  By this standard, the 

proportion of exactly accurate forecasts was similar to that of the historical forecast set (See 

Appendix C).  All inaccurate trials were inaccurate by 1 inch or more.  Inaccuracies ranged 

from -6 to 10 inches and had a mean of -1.02 inches. Thus, like the historical forecast set, 

inaccurate forecasts were biased high by about an inch and less than 20% crossed the 6-inch 

decision threshold (e.g., a second forecast of 7 inches and an observed snow accumulation of 

5 inches). 

3) Probabilistic Forecasts 

For half of participants, the forecast also included the probability of 6 or more inches of 

snow. The probabilities were also based on those provided in the historical data set. However, 

it was important to first test the impact of well-calibrated probabilistic forecasts, otherwise, 

5 Unpublished interviews with operational forecasters at National Weather Service Western Region, Seattle, 

WA. 
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null effects could be due to either the genuine lack of an effect or simply the lack of an effect 

for uncalibrated probabilities. This was especially true of the most recent forecast used as the 

standard for accuracy. Therefore, some second forecast probabilities were altered slightly so 

that forecasted probabilities for 6 or more inches of snow accumulation roughly matched the 

frequency of observing 6 or more inches of snow. See Appendix D for the calibration 

procedures and Appendix C for forecast characteristics. 

e. Design 

A single factor (forecast format) between-participants design was used. Half of 

participants received a single value forecast, while the other half received the same single 

value and the probability of six or more inches of snow accumulation (e.g., “…4 inches of 

snow … however, there’s a 30% chance of 6 or more inches of snow”).  We refer to the 

former as deterministic in that they imply an exact outcome (e.g., “…4 inches of snow”) and 

the latter as probabilistic.  Thus, other than the additional probability of observing 6 or more 

inches of snow, the forecasts and outcomes seen by both groups of participants were 

identical. Forecasts were presented in one of four fixed orders6. 

Participants were randomly assigned to one of the two forecast format conditions and 

one of the four forecast orders.  Forecast values, the magnitude of inconsistency and 

inaccuracy, and the economically optimal decision (see closure decision analysis below) were 

also included as predictor variables.  The outcome variables were trust rating, participants’ 

decisions about whether to close schools or not (closure decisions) and snow accumulation 

estimates.  

3. Results 

Prior to conducting the main analyses, we eliminated participants who did not 

understand the task, were not paying attention or not taking the task seriously.  To this end, 

participant data were excluded if a) they provided a lower estimate for maximum than for 

6 Order was a control variable to ensure that any observed effects would not be tied to a particular 

order.  All dependent variables were summarized across order. 
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minimum snow accumulation estimate, or if b) their average best estimate, or c) highest day 2 

maximum or minimum estimates were unreasonably large, i.e. greater than the national 

record accumulation amount for lowland (200m or less above sealevel) snowfall (49 inches, 

NOAA’s National Climatic Data Center 2019). Twenty-two participants were excluded in 

this procedure, leaving 398 participants in the following analyses. 

a. Trust 

1) Hypotheses 

The primary hypotheses for this research concerned whether trust was impacted by access 

to probabilistic forecasts, inconsistency between two consecutive forecasts for the same 

event, inaccuracy of the most recent forecast (when compared to the outcome), or interactions 

among these variables7. We hypothesized that: 

H1. Probabilistic forecasts would increase trust in forecasts compared to deterministic 

forecasts.  

H2. Inconsistency would reduce trust in forecasts. 

H3. Inaccuracy would reduce trust in forecasts. 

H4. The negative effect of forecast inconsistency on trust would be attenuated by the 

inclusion of a probabilistic forecast. 

H5. The negative effect of forecast inaccuracy on trust would be attenuated by the 

inclusion of a probabilistic forecast. 

2) Data Analysis Plan 

Because of our interest in the effects of inaccuracy on trust (as well as inconsistency 

and probabilistic forecasts), we analyzed the post outcome trust measure, at which point 

7 The numbering of hypotheses as reported here is slightly different than those registered although the 

content is the same. 
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forecast accuracy was known to participants (Question 6, Appendix B).8 Trust was an ordinal 

variable. Therefore, it was analyzed with a series of Generalized Estimating Equations 

(GEEs) using cumulative link proportional odds regression models (see Appendix E for 

model details and regression tables) which are designed to model ordinal data and 

population-averaged (between-group) effects. To conduct these analyses, we used the 

‘multgee’ package (Touloumis 2015) for R. We specified an ‘independence’ working 

correlation structure9 and robust standard errors to build in resistance to possible 

misspecifications of the working correlation structure.10 For this and all subsequent analyses, 

an alpha level of .05 was used to determine statistical significance.       

3) Trust Ratings 

As hypothesized, probabilistic forecasts increased trust (See Appendix E, Table E1). 

The estimated association between forecast format and trust was significant such that when 

trials included probabilistic forecasts, compared to equivalent trials with deterministic 

forecasts (inaccuracy and inconsistency held constant), the odds of reduced trust decreased 

(trust increased) by approximately 20%, estimated odds ratio= 0.80, 95%CI = (0.65,0.99), p 

=.04. 

Contrary to our predictions, inconsistency (mismatch between Forecast 1 and Forecast 

2) appeared to slightly increase (rather than decrease) trust (Appendix E, Table E1). The 

estimated association between inconsistency and trust ratings was significantly positive such 

8 The trust measure taken earlier (Question 4), was prior to making the decision or learning the outcome at 

which point accuracy was unknown to the participant. Nonetheless it yielded similar results with probabilistic 

forecasts increasing trust by approximately 35%, estimated odds ratio=.65, 95%CI = (0.51,0.82), p<.001. 

Inconsistency increased trust by approximately 5%, estimated odds ratio = 0.95, 95%CI = (0.94, 0.97), 

p<.001). 

9 This is a simplifying assumption that responses nested within a participant are independent of one another. 

10 A working correlation structure does not need to be specified correctly because robust standard errors, 

with wider confidence intervals than naïve standard errors, are agnostic to the structure specified. Therefore, 

even if the working correlation structure is mis-specified, the model will still generate appropriate estimates. 
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that a 1-inch increase in the difference between Forecast 1 and 2, compared to otherwise 

equivalent trials (inaccuracy and format held constant), decreased the odds of trust reduction 

(increased trust) by approximately 8%, estimated odds ratio = 0.93, 95%CI = (0.92, 0.94), 

p<.001. 

Meanwhile, inaccuracy, the degree of mismatch between Forecast 2 and the outcome 

appeared to decrease trust as predicted. See Appendix E, Table E1.  The estimated 

association between forecast inaccuracy and trust was significantly negative such that a 1-

inch difference between Forecast 2 and the observed accumulation, compared to otherwise 

equivalent trials (inconsistency and format held constant), increased the odds of trust 

reduction (reduced trust) by approximately 15%, estimated odds ratio = 1.15, 95%CI = 

(1.14, 1.17), p<.001. To reiterate, although the effect of inaccuracy on trust confirmed our 

hypothesis, the effect of inconsistency did not. Inaccuracy had a negative association with 

trust (decreased trust) whereas inconsistency had a slight positive association with trust 

(increased trust).  

Previous research suggested that inconsistent forecasts had a smaller effect on trust 

when forecasts were inaccurate (Burgeno and Joslyn 2020).  To better understand this 

relationship with naturalistic forecasts incorporating a wider range of inconsistencies and 

inaccuracies, we conducted exploratory analyses with inaccuracy dichotomized at 3 inches 

(roughly the mean of inaccuracies). See Appendix E, Table E4 and E4a. In these data, the 

strength of the positive association between inconsistency and trust differed significantly 

across levels of forecast accuracy, p<.001 such that it was stronger (interaction odds ratio 

farther from 1) for trials with greater inaccuracy (more than 3 inches from the outcome), 

estimated odds ratio=0.80, 95%CI= (0.78,0.82), compared to equivalent trials (forecast 

format held constant) with less inaccuracy (less than 3 inches), estimated odds ratio=0.93, 

95%CI= (0.92,0.94). This suggests that as with previous research, at low forecast inaccuracy 

there was an association between inconsistency and trust.  However, as the inaccuracies 

increased (greater than 3-inches, not tested in previous research) the effect on trust was 

greater. In contrast with previous research, here, the association between trust and 

inconsistency was positive.  Therefore, the positive effect of inconsistency on trust was 

greater when inaccuracy was greater. 

The association between inconsistency and trust also differed significantly across 

forecast format, p<.001. The positive association between inconsistency and trust was 
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stronger (farther from odds ratio=1) for trials that included probabilistic forecasts, estimated 

odds ratio=0.90, 95% CI= (0.88,0.91), compared to equivalent trials (inaccuracy held 

constant) with deterministic forecasts, estimated odds ratio=0.96, 95%CI= (0.94,0.97). See 

Appendix E, Table E2 and E2a. In other words, probabilistic forecasts were associated with a 

stronger increase in trust due to inconsistency compared to equivalent trials with 

deterministic forecasts (for the general pattern, see Figure 1, Panel A).  

Similarly, in support of our hypothesis, the association between inaccuracy and trust 

differed significantly by format, p=.04. The negative association was weaker for trials that 

included probabilistic forecasts, estimated odds ratio=1.13, 95%CI= (1.12,1.15), compared 

to equivalent trials (consistency held constant) with deterministic forecasts, estimated odds 

ratio=1.17, 95% CI = (1.14, 1.19). See Appendix E, Table E3 and E3a. In other words, as 

hypothesized, probabilistic forecasts attenuated the negative effect of inaccuracy on trust, 

compared to equivalent trials with deterministic forecasts (for the general pattern, see Figure 

1, Panel B).  

Figure 1. Panel A. Regression Lines for Trust Rating by Inconsistency and Forecast 

Format. Panel B. Regression Lines for Trust Rating by Inaccuracy and Forecast Format. Note 

that unlike the analyses reported above, these figures do not control for the effect of other 

variables.  They merely provide an illustration of the general pattern.  

Taken together, these results suggest that here, with more realistic forecasts, unlike 

previous experiments, inconsistency increased rather than decreased trust and the impact was 
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Deterministic Probabilistic 

Mean SD Mean SD 

Post-Decision Trust (rating scale 3.82 1.41 3.99 1.42 

from 1-6) 

Expected Value Difference -1.47 0.95 -1.43 0.90 

(smaller indicates better decisions) 

All below are inches: 

Best Estimate, F1 4.90 3.77 4.87 3.78 

Best Estimate, F2 5.81 4.56 5.77 4.63 

Minimum Estimate, F1 2.73 3.15 2.63 2.93 

Minimum Estimate, F2 3.47 3.77 3.24 3.51 

Maximum Estimate, F1 7.18 4.47 6.79 4.56 

Maximum Estimate, F2 8.02 5.18 7.72 5.21 

Range Estimate 4.55 3.51 4.48 3.51 

 

greater with greater inaccuracies. However, the rest our predictions were confirmed. 

Probabilistic forecasts increased trust and interacted with the effects on trust due to both 

inconsistency and inaccuracy.  Probabilistic forecasts enhanced the positive association 

between inconsistency and trust. At the same time probabilistic forecasts attenuated the 

reduction in trust due to inaccurate forecasts. 

Table 1 Descriptive Statistics: 

Participants’ Mean Response on Key Dependent Variables Within Each Forecast Format 

Condition (Deterministic, Probabilistic) 

Note: F1 refers to forecast 1 and F2 refers to forecast 2.  
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b. Accumulation Estimates, Ranges and Closure Decisions 

Next we examined participants’ closure decisions and snow accumulation estimates.  

We hypothesized that: 

H6. Probabilistic forecasts would enhance decision quality, defined here as the expected 

value of the decision (see calculation below) and greater differentiation of closure 

decisions across the decision threshold value (see below). 

H7. Inconsistency would increase uncertainty expectations, defined here as the range of 

anticipated outcomes (“as much as”, “as little as”), and increase decision quality. We 

also asked what further impact forecast format (deterministic, probabilistic) would 

have on uncertainty expectations. 

H8. The most recent forecast (Forecast 2) would have a greater impact on participants’ 

outcome estimates requested after Forecast 2 was shown, than would the initial 

forecast, (Forecast 1) suggesting that participants understood that the most recent 

forecast was more accurate.  

1) Data Analysis Plan 

The continuous variables, decision quality, uncertainty expectations and snow 

accumulation estimates were analyzed using linear mixed model regressions11. A t-statistic 

(coefficient divided by its standard error) and alpha levels of .05 were used to determine 

whether the coefficient of each predictor variable (See Appendix G for regression tables) was 

significantly different from 0, i.e., whether the contribution that predictor was significant. 

School closure decisions were analyzed as a binary variable, modeled with a series of binary 

logistic GEEs (see Appendix F for model details and regression tables). To conduct these 

analyses, we used the ‘geepack’ package for R (Højsgaard, Halekoh, and Yan 2006), with 

robust standard errors.  We specified an ‘independence’ working correlation structure and 

binomial family. See Table 1 for descriptive statistics. 

1) Decision Quality 

11 Linear mixed model regression analyses are also capable for accounting for clustered responses. 
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First, we examined whether probabilistic forecasts improved decision quality. The 

quality of the participant’s decision was defined as its value, prior to knowing the outcome, 

referred as the “expected value” (Bernoulli 1954). We describe it here as the “expected cost” 

because only losses (cost of closure or penalty) were possible in this task. For each trial the 

optimal choice was the one with the least expected cost (Murphy 1977). There were two 

possible options on every trial, to advise 1) keeping the school open or 2) closing. The 

expected cost of keeping a school open (there was no actual cost) was the product of the 6-

point penalty and the chance of receiving it (the percent chance of 6 or more inches of snow 

for the second forecast on that trial). The cost of closing a school was the 2-points that 

participants paid when they selected that option. A 33% chance of 6 or more inches of snow 

was the breakeven point at which the expected cost of staying open (.33 x 6 = 2) was equal to 

the cost of closing (2 points). Therefore, whenever the chance of 6 or more inches was greater 

than 33% it was optimal to advise closing because the cost of closing was less than the 

expected cost of staying open. Whenever the chance of 6 or more inches was less than 33%, 

it was optimal to advise staying open. A difference score was calculated on each trial by 

subtracting the expected (or actual) cost of the participant’s choice from the optimal choice 

on that trial (henceforth referred to as expected cost difference). A “0” difference indicates 

that the participant made the optimal choice. Otherwise, the value is negative. Then, a linear 

mixed model regression analysis was conducted on the expected cost difference (See 

Appendix G), with forecast format (probabilistic/deterministic), inconsistency, and the 

inconsistency by forecast format interaction entered simultaneously as predictors12. 

Confirming our hypothesis, the expected cost difference was smaller (decision quality 

was better) for probabilistic compared to the deterministic forecasts (See Table 1).  In 

particular, shifting from the deterministic to the probabilistic format predicted a .06 unit 

decrease in the expected cost difference, t(51736)=10.10, p<.001. 

12 Inaccuracy was not included as a predictor because participants had not learned the outcome at the point 

at which they made a decision. 
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There was also an unpredicted increase in decision quality due to inconsistency, 

although it was smaller than the effect of forecast format. For every 1 unit increase in 

inconsistency, there was a .02 unit decrease in expected cost difference (decision quality was 

better), t(51736)=21.19, p<.001. Additionally, the inconsistency by forecast format 

interaction was significant such that the probabilistic forecast reduced the expected cost 

difference (increased decision quality) for smaller inconsistencies, but less so for larger 

inconsistencies, where decision quality was already higher, t(51736)=6.73, p<.001, B=.01. 

We will return to this issue in the discussion.  

To better understand the decision errors participants made we next examined the 

difference in participants decisions to close schools above and below the optimal decision 

threshold. As mentioned above, according to expected value theory, it was optimal to close 

schools whenever the probability of 6 or more inches of snow was 33% or higher, and to keep 

schools open otherwise. By this standard, as is common with decisions that involve only 

losses (Tversky and Kahneman 1979)13. most decision errors (65%) were risk-seeking 

(participants kept schools open when they should have closed) as opposed to risk-averse 

(closing schools when they should stay open).  Binary logistic GEE models were used to 

examine the associations between closure decisions (open or close) and forecast format, 

inconsistency, and a categorical variable that indicated whether the optimal decision was to 

stay open or close on that trial. Two interactions were also tested, forecast format by 

inconsistency and forecast format by optimal decision. Thus, there were three models: one 

with the main effects entered simultaneously, and one for each of the two interaction effects 

(controlling for all main effects; see Appendix F). 

Indeed, participants tended to follow the optimal strategy.  The estimated association 

between optimal decision and actual closure decisions was significantly positive such that a 

day 2 forecast probability at or above 33% increased the odds of deciding to close by 

approximately 3000%, estimated odds ratio=30.39, 95% CI= (28.30, 32.60), p<.001. See 

Appendix F, Table F1. 

13 There are some exceptions to this at very small likelihoods (Tversky and Fox 1995) 
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Importantly, as reflected in the expected value analysis, participants made fewer 

errors with probabilistic forecasts.  The estimated association between optimal decision and 

closure decisions varied significantly across forecast format, p<.001. Probabilistic forecasts 

supported greater differentiation across the decision threshold, estimated odds ratio = 44.2, 

95% CI = (39.4, 49.5), compared to deterministic forecasts (inconsistency held constant), 

estimated odds ratio = 22.7, 95% CI = (21.2,24.4). See Appendix F, Table F2 and F4. In 

other words, probabilistic forecasts decreased the odds of deciding to close when it was 

optimal to keep a school open and increased the odds of deciding to close when it was 

optimal to close compared to those who received deterministic forecasts. 

In contrast, participants closed more often overall as the inconsistency in forecasts 

increased. The estimated association between inconsistency and closure decision was 

significantly positive, such that a 1-inch difference between Forecast 1 and 2, compared to 

otherwise equivalent trials (forecast format and threshold orientation held constant), 

increased the odds of deciding to close by approximately 44%, estimated odds ratio=1.44, 

95%CI =(1.42, 1.46), p<.001. See Appendix F, Table F1. In addition, the association 

between optimal decision and actual closure decisions was stronger for larger inconsistencies 

compared to smaller inconsistencies, estimated odds ratio =1.68, 95% CI = (1.59,1.77), 

p<.001.14 See Appendix F, Table F3. 

Thus, examination of closure decisions above and below the optimal threshold (33% 

chance of 6 or more inches) aligned with the expected value analysis. Probabilistic forecasts 

allowed participants to make better decisions than did deterministic forecasts in both 

analyses. Participants also made better decisions when forecasts were inconsistent. This was 

due in part to the fact that inconsistency encouraged them to close the schools more often, an 

advantage in this task in which people tend to be risk seeking (majority of errors were not 

closing when closing was optimal). 

14 This may be explained by the fact that magnitude of inconsistency was positively correlated with the 

probability of greater than 6 inches (r=.67, p<.001), making it generally optimal to close in trials in which there 

were large inconsistencies. 
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3) Range Estimates 

The above analysis suggests that participants made better decisions (in this case more 

conservative, closing schools more often) both when they were provided with explicit 

uncertainty estimates, the precent chance of 6 or more inches of snow, and when there was 

greater inconsistency between the Day 1 and 2 forecasts. This latter result could be due in 

part to the fact that participants interpreted inconsistency as an indication of uncertainty in the 

forecast. To determine whether this was the case, a range of anticipated outcomes was 

calculated. This was done by subtracting participants’ minimum (Question 2, Appendix B) 

from their maximum (Question 3, Appendix B) estimate of the number of inches that would 

not surprise them, taken after the second forecast. A wider range of anticipated outcomes 

suggests greater perceived uncertainty. Then, a linear mixed model regression was conducted 

on range of outcomes, with inconsistency, forecast format, and the inconsistency x forecast 

format interaction entered simultaneously as predictors. See Appendix G for regression 

tables. Confirming our hypothesis, forecast inconsistency tended to increase the range of 

anticipated outcomes.  More specifically, every 1-inch increase in inconsistency predicted a 

.62-inch increase in range, t(51340)=88.23, p<.001. The main effect of forecast format did 

not reach significance, t(404)=1.39, p=.17. However, the inconsistency by forecast format 

interaction was significant such that participants who received probabilistic forecasts 

expected a smaller range of values for lower magnitude inconsistencies, and a larger range of 

values for higher magnitude inconsistencies, compared to participants who received 

deterministic forecasts, t(51340)=10.37, p<.001, B=.09 (see Figure 2). Thus, as predicted, 

participants expected greater uncertainty with greater inconsistency. In addition, probabilistic 

forecasts amplified the difference in uncertainty expectations across the range of 

inconsistency.  

22 

Accepted for publication in Weather, Climate, and Society. DOI 10.1175/WCAS-D-22-0064.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/28/23 06:52 PM UTC 

https://t(51340)=10.37
https://t(404)=1.39
https://t(51340)=88.23


   

 

   

   

    

 

  

  

  

  

            

    

 

Figure 2. Regression Lines for Uncertainty Expectations by Inconsistency and 

Forecast Format.  

3) Snow Accumulation Estimates 

To determine how the two forecasts influenced a participant’s own expectations of the 

outcome, we next examined snow accumulation estimates for Wednesday made after 

Forecast 2 (Question 1, Appendix B). A linear mixed model regression was conducted on 

snow accumulation estimates, with three continuous predictor variables (Forecast 1 value, 

Forecast 2 value, inconsistency) and the categorial predictor, forecast format (deterministic, 

probabilistic) entered simultaneously with the inconsistency by forecast format interaction.15 

See Appendix G for regression tables. 

As hypothesized, the second forecast was a much better predictor of snow 

accumulation estimates than was the first forecast. For every 1 unit increase in the second 

15 Inaccuracy was not included as a predictor because participants had not yet learned the outcome at the 

point at which they made an estimate.    
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forecast, there was a .87 unit increase in estimated snow accumulation, t(51330) = 322.72, 

p<.001.16 In contrast, for every 1 unit increase in the first forecast, there was only a .08 unit 

increase in estimated snow accumulation, t(51330) = 30.11, p<.001. In addition, there was 

an unpredicted effect of inconsistency.  Inconsistency slightly but significantly reduced 

estimates.  More specifically, every 1 unit increase in inconsistency predicted a .03 unit 

decrease in estimated snow accumulation, t(51330) =5.91, p<.001. The main effect of 

forecast format failed to reach significance, t(411) = .72, p=.47. However, the inconsistency 

by forecast format interaction was marginally significant, t(51330)=1.97, p=.05, such that the 

reduction in estimates due to inconsistency was stronger for deterministic forecasts than for 

probabilistic forecasts. In sum, as predicted, these results suggest that participants weighted 

the most recent forecast ten times more heavily than the earlier forecast, in their own 

estimate. 

4. Discussion/Conclusion 

The experiment reported here is the first to demonstrate the benefits of probabilistic 

forecasts to enhance both trust in the forecast and decision quality in the face of forecast 

inconsistency. Participants made better decisions, in terms of both increased expected value 

and fewer decision errors with probabilistic than deterministic forecasts. A closer inspection 

of decision errors clarified the benefits of the probabilistic forecast. Because only costs and 

losses were possible in this task, participants made more risk seeking (failing to close schools 

when it was economically optimal) than risk averse errors (closing schools when it was NOT 

economically optimal).  In cost/loss situations such as this, people tend to prefer to take a risk 

than to pay a small cost up front to protect against that risk, even when it is not economically 

optimal to do so (Tversky and Kahneman 1979). However, the error analysis revealed that 

those with probabilistic forecasts were less prone to this strategy. They differentiated to a 

greater degree across the optimal decision threshold. In other words, when provided with the 

16 Note that, due to the inclusion of random effects, R2 is uninterpretable for mixed model regressions. 
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probability of six or more inches of snow, participants closed schools more often when it was 

economically optimal to do so (probability of 6 or more inches was 33% or more), and kept 

schools open more often when it was economically optimal to do so (probability of 6 or more 

inches was less than 33%) compared to participants using the deterministic forecast alone. 

This experiment is also the first to demonstrate the impact of forecast inconsistency 

on trust and decision-making using naturalistic forecast stimuli. The basic conclusions from 

these results align remarkably well with those reported in previous highly controlled 

experiments (Burgeno and Joslyn 2020; Su, Burgeno, and Joslyn 2021) suggesting that 

forecast inconsistency, as it is defined here, may not be as detrimental to trust as is often 

assumed. 

However, here, in contrast to the highly controlled studies cited above, the results 

suggest that naturalistic forecast inconsistency may have a positive impact on trust. One 

potential explanation resides in the set of historical forecasts used here in which the 

inconsistent forecasts were predominantly ascending (the second forecast was for greater 

accumulation than the first). Moreover, the increasing forecast trend tended to be confirmed 

by the outcome in those trials. For 72% of the ascending trials the observed accumulation was 

higher than the most recent forecast.  People may have expected the trend to continue, as has 

been shown in previous research (Hohle and Teigen 2015, 2018; Maglio and Polman 2016), 

and confirmation of those expectations may have increased trust. Another factor that may 

have increased trust slightly is that fewer of the inconsistencies between forecasts (31%) 

crossed the 6-inch decision threshold in this experiment, compared to the highly controlled 

studies (50% at minimum). Because participants decisions depended on whether 6 or more 

inches was expected, an inconsistency may be less trustworthy when the two forecasts point 

toward different choices (close/open). Therefore, the slight positive effect of inconsistency on 

trust found in this experiment may be specific to situations in which there is an ascending 

trend or the trend in forecasts is confirmed by the result, or the inconsistency is less 

consequential to the decision. Resolving these issues might be a fruitful line of future 

research, in which such variables could be systematically manipulated to determine their 

individual impacts on trust. 

An alternative more general explanation is that inconsistency increases trust because 

it acts as an estimate of uncertainty. As with the prior research (Burgeno and Joslyn 2020), 

the results reported here demonstrated that participants expected a larger range of outcomes 
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with greater inconsistency, suggesting that they perceived greater uncertainty in these 

forecasts. However here, unlike the previous highly controlled studies in which inconsistency 

was held constant at a few inches, some of the inconsistencies were much larger. This may 

have enhanced the positive effect of perceived uncertainty on trust. It is clear that an explicit 

expression of uncertainty increases trust. As with numerous previous experiments (Joslyn 

and LeClerc 2012; LeClerc and Joslyn 2015; Grounds, LeClerc, and Joslyn 2018), the 

inclusion of the probabilistic forecast increased trust over the single value forecast. It may be 

that when uncertainty is acknowledged in some way, either with an explicit uncertainty 

estimate or implied by the inconsistency in forecasts, the forecast seems less “wrong” when 

the single value forecast does not match the observed snow accumulation. 

Somewhat surprisingly, forecast inconsistency also increased decision quality slightly, 

perhaps because it was interpreted as a sign of uncertainty. Forecast inconsistency appeared 

to encourage greater cautiousness, closing schools more often overall, as was seen in 

previous research (Burgeno and Joslyn 2020).  Greater cautiousness tended to increase 

decision quality in this task because the majority of errors were risk-seeking (failing to close 

when it was optimal). The increase in cautiousness with inconsistent forecasts seen here may 

have been due in part to the fact that with these forecast data, greater inconsistency tended to 

be correlated with higher forecasted snow accumulation totals in Forecast 2 (r=.39, p<.001). 

However, this could not have been the explanation in the previous research in which 

inconsistency also increased cautiousness (Burgeno and Joslyn 2020) because forecast values 

in those experiments were held constant across conditions. Thus, an explanation that 

accounts best for all of these results, is that the increase in decision quality is due to the fact 

that inconsistency acts to signal uncertainty which promotes cautiousness. Regardless of the 

reason, it is important to note that the positive effect of inconsistency on closure decisions 

differed qualitatively from that of probabilistic forecasts which was more precise. 

Probabilistic forecasts, because they specified the percent chance of snow accumulation 

surpassing the decision threshold (6 or more inches) increased closure decision mainly when 

it was optimal to do so and not otherwise. 

We were also interested in how people integrate information from differing forecasts 

to form their own estimates.  In line with the previous research on sequential forecasts 

(Burgeno and Joslyn, 2020), participants’ snow accumulation estimates were influenced more 

strongly by the second than by the first forecast values.  In other words, although participants 
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did not completely disregard the first forecast, they appeared to understand that the most 

recent forecast should take precedence.  There are at least two possible explanations for this. 

It may be due to extensive extra-experimental experience with real weather forecasts, leading 

to many, oftentimes correct, intuitions about forecasts (Morss, Demuth, Lazo, 2008; Joslyn 

and Savelli, 2010; Savelli and Joslyn, 2012).   However, it’s important to note that our 

forecast stimuli were realistic in the sense that second forecasts (Mean inaccuracy= 2.14, SD 

= 1.81) were on average closer to accurate than first forecasts (Mean inaccuracy = 2.42, SD = 

2.03). Participants might have learned (explicitly or implicitly) to discount first forecasts 

within the context of the experimental experience. 

The main limitation of the research presented here is related to one of the primary 

goals: to evaluate the effects of forecast accuracy and consistency on trust and decision 

making in the context of naturalistic forecasts. Allowing forecasts and outcomes to vary 

naturally led to a loss in internal validity.  In other words, some of the effects observed here 

may be limited to similar forecast sets.  For instance, here (and perhaps in most naturalistic 

situations), inconsistency led to a slight increase in trust. This could have been due to the 

perception of greater uncertainty per se (perhaps due to larger inconsistencies than in the 

previous highly controlled studies), or to the predominance of ascending and confirmed 

trends in this forecast set. Similarly, participants’ increased cautiousness with inconsistent 

forecasts may have been due to the perception of greater uncertainty per se, or to the fact that 

inconsistent forecasts often included slightly higher snow total values. Thus, future work 

should test these effects with different naturalistic forecast data as well as manipulate them 

systematically in controlled studies, to verify these particular effects.  Another issue that 

could be resolved in future research is whether the source of inconsistency matters.  For 

instance, inconsistency could be due to capricious weather situations or to lack of expertise 

among forecasters which may impact some form of trust. Finally, it is important to note that 

this was a student sample. It is possible that greater experience or differences in education 

level might lead to slightly different results. However, recent evidence suggests that the 

ability to use probabilistic forecasts to make better decisions is similar among college 

students to a broader population (Grounds 2016; Grounds and Joslyn 2018). It is also 

important to note, that decisions in a controlled experimental environment such as this, differ 

in many respects to those made in real world situations in which other factors play a role and 

the decision consequences can be very serious. 
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Importantly, the main results reported here align with a growing body of highly 

controlled experimental research. We have shown here that, in line with previous research 

(Joslyn and LeClerc 2012; LeClerc and Joslyn 2015; Grounds, LeClerc, and Joslyn 2018; 

etc.), explicit numeric uncertainty estimates preserved trust in the context of naturalistic 

forecasts and outcomes, especially as inaccuracy increased. Probabilistic forecasts also 

allowed users to make better decisions from an economic perspective.  In addition, the 

research reported here provides converging evidence that the effect of forecast inconsistency 

is not as problematic as once thought and may also confer some benefits upon forecast users. 

It is important to consider the impact of forecast inconsistency in the context of forecast 

inaccuracy as we have done here because there can be a tradeoff between them. Weather 

models tend to grow more accurate as lead times decrease. Therefore, the artificial 

maintenance of forecast consistency can be at a cost to accuracy. As shown previously in 

studies with highly controlled forecast stimuli (Burgeno and Joslyn 2020, Su, Burgeno, and 

Joslyn 2021) and here with naturalistic forecast data, inaccuracy is much more detrimental to 

trust than is inconsistency. This is true whether inconsistency is based on a single source 

(presented experiment, Burgeno and Joslyn 2020) or resides in multiple sources (Su, 

Burgeno, and Joslyn 2021). It is true whether forecasts are encountered sequentially (present 

experiment, Burgeno and Joslyn 2020) or simultaneous (Su, Burgeno, and Joslyn 2021). All 

of this evidence points in the same direction: Inaccuracy is far more detrimental to user trust 

than is inconsistency. In fact, much of this research suggests that inconsistency may be 

beneficial in that it provides useful information to decision makers. Based on this converging 

evidence, we recommend that forecast providers avoid artificially preserving consistency at a 

potential loss to accuracy.  Updating forecasts and including well calibrated uncertainty 

estimates, can preserve trust in the information source as well provide users with decision-

relevant information. 
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APPENDIXES 

Appendix A: Task Instructions and Training Trials 

Scenario 

You have been hired to work for a decision consultancy. Your project this winter is to 

consult with school districts faced with widespread snowstorms. Your job is to provide 

decision advice regarding whether they should close school for the day or stay open for 

class. 

Schools are closed when driving conditions are unsafe to prevent accidents and 

injuries. However, school closures are expensive to the district because days must be made 

up at the end of the school year. 

You will be provided with forecasts for each school area 2-days and 1-day in advance of a 

storm to help you make your decision. Due to microclimates across the regions, snow 

accumulation can differ from location to location; therefore, you will receive weather forecast 

information from a private weather service that specializes in local predictions. 

There will be two periods for which winter storms are anticipated across two regions. For 

each storm, you will provide school closure advice for 65 schools located throughout the 

region. You will see a screen indicating the new period after school 65. 

If you think the school area will receive 6 inches of snow or more, advise closing. If you 

think the school area will receive less than 6 inches, advise staying open. 

Your boss gives cash bonuses to the members of the decision consultancy staff who offer the 

best advice.  You will begin with 332 points. It will cost 2 points every time you advise 

closing. It will cost 0 points if you advise to stay open. However, if you advise to stay open 

and 6 inches of snow or more is observed, then you will be penalized 6 points. Your goal is 

to give the best advice possible and retain as many points as you can. You will receive a 
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cash bonus if your ending balance is above 72 

points. 

Summary 

When you expect 6 inches or more of snow, you should advise the school to close. 

When you expect less than 6 inches of snow, you should advise the school to stay open. 

Cost to close schools: 2 points to compensate for makeup days. 

Penalty for staying open when 6 inches or more are 

observed: 6 points to compensate for traffic 

accidents and injuries. 

You will receive one dollar for every 32 points above 72 points at the end of the session. 

You will now see several demonstration trials to help you understand your task. After those 

trials, you will begin making your own decisions. Your goal is to end up with the highest 

number of points 

possible. 

Figure A1. Training Trials 
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Appendix B: Questions Asked on Each Trial 

1. How much snow accumulation do you expect on Wednesday?____ 

2. I would not be surprised if the snow accumulation was as little as ____ inches 

3. I would not be surprised if the snow accumulation was as much as ____ inches 

4. How much do you trust Monday’s [or Tuesday’s] forecast to help you make your 

decision? [Response: 6-point scale from “not at all” to “completely”] 

5. Do you want to close the school tomorrow? 

Response options: 

Close: cost 2 points (I think snow accumulation will be 6 inches or more.) 

Stay Open: cost 0 point (I think snow accumulation will be less than 6 inches.) 

6. Trust rating taken after outcome is shown: 

How much did you trust this week’s forecasts to help you make your decision? 

Response: 6-point scale from “not at all” to “completely” 
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    Appendix C: Features Preserved in the Forecast Set Compared to Historical Forecast Set  

Original Historical Forecast 

 Data (N=160) 

Final Experimental Forecast Data 

(N=130)  

 Min  Max  Mean  SD Min   Max Mean   SD 
  Observed Snow 

 Accumulation  
 0 

 0 

 0 

 0 

 0 

-8 

 0 

 0 

 20 

 11 

 18 

 78 

 100 

 9 

 9 

 6 

 4.46 

 3.79 

 5.83 

 26.06 

 37.78 

 -1.37 

 2.49 

 1.18 

 4.70 

 3.26 

 5.15 

 23.85 

 34.91 

2.44 

 1.75 

 1.66 

 0 

 0 

 0 

 0 

 0 

-6 

 0 

 0 

 20 

 17 

 17 

 100 

 100 

 10 

 10 

 6 

 5.08 

 5.75 

 6.11 

 40.13 

 40.13 

-1.02 

 2.24 

 1.89 

 4.62 

 4.50 

 4.77 

 31.23 

 31.23 

 2.47 

 1.89 

 1.44 

Deterministic 

 Forecast 1 Values  

Deterministic 

 Forecast 2 Values  

Forecast 1  

  Probabilities of 6"+ 

Forecast 2  

  Probabilities of 6"+ 

  Inaccuracy of 

Deterministic 

Forecast 2  

 Absolute Value of 

(Forecast 2)  

 Inaccuracy for  

 Inconsistent* 

Deterministic 

Forecasts  

 Absolute Value of 

(Forecast 2)  

 Inaccuracy for  

  Exactly Consistent** 

Deterministic 

Forecasts  

 Proportion of All 

Cases:  

 Exactly Accurate   21.9%  20.0% 
  Threshold Crossing 

Inaccuracies  
 15.6% 

 17.5% 

 19.2% 

 16.2%   Threshold Crossing 

Inconsistencies  

 

 

*Original inconsistent N=115; Final inconsistent N=66. 

**Original exactly consistent N=45; Final exactly consistent N=64. 

34 

Accepted for publication in Weather, Climate, and Society. DOI 10.1175/WCAS-D-22-0064.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/28/23 06:52 PM UTC 



    

     

   

  

    

    

    

   

   

    

   

 

Probabilistic 

Forecasts  

Experienced Prob 

 of 6"+ 

Original 

 Data 

Observed 

over 6"  

Total 

Events  

Binned real 

probabilities  

 0%  3.33%  2.27%  1  30 <5%  

 10%  10.00%  0.00%  1  10 5 to 14  

 20%  20.00%  7.69%  2  10 15 to 24  

 30%  30.00%  36.36%  3  10 25 to 34  

 40%  40.00%  40.00%  4  10 35 to 44  

 50%  50.00%  36.84%  5  10 45 to 54  

 60%  60%  64%  6  10 55 to 64  

 70%  70%  100%  7  10 65 to 74  

 80%  80%  100%  8  10 75 to 84  

 90%  90.00% 100.00  9  10 85 to 94  

 % 

 100%  100.00% 100.00  10  10 95 to 100  

 % 

 Total  56  130 

 

Appendix D: Probabilistic Forecast Calibration Procedure 

A binning technique was used to examine the reliability of the probabilistic forecasts 

because there were very few cases at the same probability, precluding more conventional 

measures such as the Brier score (Brier, 1950). A bin was considered calibrated if the 

proportion of observed events with 6 or more inches fell within the probability range for that 

bin. For instance, Bin 2 ranged between 5-14% and contained 1 out of 10 trials (10%) in 

which 6 or more inches of snow accumulation was observed. 

In the historical forecast data set, the proportion of outcomes at or above the 6-inch 

threshold was within a few percentage points of the bin boundaries in most cases. However, 

in the higher probability bins (65-74%,75-84%, and 85-94%), the proportions were as many 

as 25 percentage points higher than the upper bound of the bin suggesting a low bias in the 

forecasted probabilities for that day. Therefore, slight changes were made (cases were 

removed, duplicated, and/or the probabilities were modified) to perfect probabilistic forecast 

reliability while maintaining the basic characteristics of the historical forecast set. See Table 

D below. 

Table D. Day  2 Forecasted and Observed Probabilities 
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Appendix E: Trust Analyses: GEE model Descriptions and Regression Tables by 

Hypotheses 

Hypotheses 

Hypothesis 1: Is Forecast Format associated with Trust? 

Hypothesis 2: Is Inconsistency associated with Trust? 

Hypothesis 3: Is Inaccuracy associated with Trust? 

Hypothesis 4: Does the association between Inconsistency and Trust differ across Forecast 

Formats? 

Hypothesis 5: Does the association between Inaccuracy and Trust differ across Forecast 

Formats? 

Exploratory: Relationship between Inconsistency, Inaccuracy and Trust 

Models 

Table E1. Hypotheses 1, 2, and 3 are addressed by Model I with predictors Inaccuracy, 

Inconsistency, and Forecast Format. 

Effect Odds Ratio 95% CI 

LL UL 

p 

Inaccuracy 

Inconsistency 

Forecast Format 

1.15 

.93 

.80 

1.14 

.92 

.65 

1.17 

.94 

.99 

<.001 

<.001 

.04 

Table E2. Hypothesis 4 is addressed by Model II with predictors Inaccuracy, Inconsistency, 

Forecast Format, and the Inconsistency by Forecast Format interaction.     

Effect Odds Ratio 95% CI p 

LL UL 

Inaccuracy 1.15 1.14 1.17 <.001 

Inconsistency 0.96 0.94 0.97 <.001 

Forecast Format 0.92 0.74 1.14 0.47 

Inconsistency x 0.93 0.91 0.95 <.001 

Forecast Format 

Interaction 

Table E2a. Model III with predictors Inaccuracy, Forecast Format, Inconsistency by 

Deterministic, and Inconsistency by Probabilistic interactions, was conducted to explore how 

the association between Inconsistency and Trust differed across Forecast Format. 

Effect Odds Ratio 95% CI p 

LL UL 

Inaccuracy 1.15 1.14 1.17 <.001 

Forecast Format 0.92 0.75 1.15 0.47 

36 

Accepted for publication in Weather, Climate, and Society. DOI 10.1175/WCAS-D-22-0064.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/28/23 06:52 PM UTC 



 

 

    

 

 

    

  

  

    

  

     

     

     

 

 

    

 

  

    

  

     

     

 

 

    

 

 

    

 

 

    

  

     

     

     

 

 

 

    

   

      

  

    

 

Inconsistency x 0.96 0.94 0.97 <.001 

Deterministic 

Inconsistency x 0.90 0.88 0.91 <.001 

Probabilistic 

Table E3. Hypothesis 5 is addressed by Model IV with predictors Inaccuracy, Inconsistency, 

Forecast Format, and the Inaccuracy by Forecast Format Interaction. 

Effect Odds Ratio 95% CI p 

LL UL 

Inaccuracy 1.17 1.14 1.19 <.001 

Inconsistency 0.93 0.92 0.94 <.001 

Forecast Format 0.85 0.68 1.06 0.16 

Inaccuracy x 0.97 0.95 1.00 0.037 

Forecast Format 

Interaction 

Table E3a. Model V with predictors Inconsistency, Forecast Format, Inaccuracy by 

Deterministic, and Inconsistency by Probabilistic interactions, was conducted to explore how 

the association between Inaccuracy and Trust differed across Forecast Format. 

Effect Odds Ratio 95% CI p 

LL UL 

Inconsistency 0.93 0.92 0.94 <.001 

Forecast Format 0.85 0.68 1.07 0.16 

Inaccuracy x 1.17 1.14 1.19 <.001 

Deterministic 

Inaccuracy x 1.13 1.12 1.15 <.001 

Probabilistic 

Table E4. Exploratory Model VI with predictors Inaccuracy, Forecast Format, and 

Inconsistency by Forecast Format interaction, was conducted to test whether the association 

between Inconsistency and Trust differs across Accuracy.  

Effect Odds Ratio 95% CI p 

LL UL 

Inaccuracy 1.31 1.28 1.34 <.001 

Inconsistency 1.06 1.04 1.07 <.001 

Forecast Format .80 .64 .99 0.04 

Inaccuracy x 0.94 0.93 0.94 <.001 

Inconsistency 

Interaction 

Table E4a. Exploratory Model VII with predictors Inaccuracy, Forecast Format, 

Inconsistency by High Accuracy and Inconsistency by Low Accuracy interactions, was 

conducted to explore how the association between Inconsistency and Trust differed across 

Accuracy.     

Effect Odds Ratio 95% CI p 
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 LL  UL 

 Inaccuracy  1.18  1.16 1.20   <.001 

Forecast Format   0.80  0.65 0.99   .04 

Inconsistency x   0.93  0.92 0.94   <.001 

 High Accuracy 

Inconsistency x   0.80  0.78 0.82   <.001 

 Low Accuracy 

  

   

 

  

  

  

 

  

 

    

 

 

 

 

 

    

  

     

     

 

    

 

    

  

 

Appendix F. Closure Decision Analyses: Binary GEE Model Descriptions and Regression 

Tables by Hypotheses 

Hypotheses 

Hypothesis 6a: Is Forecast Format associated with Closure Decisions? 

Question 6b: Is Optimal Decision associated with Closure Decisions? 

Question 6c: Does the association between Optimal Decision and Closure Decisions differ 

across Forecast Formats? 

Question 6d: Does the association between Optimal Decision and Closure Decisions differ 

across Inconsistency? 

Question 6e: Is Inconsistency associated with Closure Decisions? 

Exploratory: Relationship between Optimal Decision, Forecast Format, and Closure 

Decisions 

Models 

Table F1. Hypothesis 6a and Questions 6b and 6e are addressed by Model I with predictors 

Optimal Decision, Inconsistency, and Forecast Format. 

Effect Odds Ratio 95% CI p 

LL UL 

Forecast Format 0.95 0.85 1.08 0.43 

Inconsistency 1.44 1.42 1.46 <.001 

Optimal 30.39 28.34 32.59 <.001 

Decision 

Table F2. Question 6c is addressed by Model II with predictors Optimal Decision, 

Inconsistency, Forecast Format, and the Optimal Decision by Forecast Format interaction.     

Effect Odds Ratio 95% CI p 

LL UL 
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Forecast Format 0.64 0.54 0.75 <.001 

Inconsistency 1.44 1.42 1.46 <.001 

Optimal 22.74 21.22 24.36 <.001 

Decision 

Optimal 1.94 1.70 2.22 <.001 

Decision x 

Forecast Format 

Table F3.  Question 6d  is addressed by Model III  with predictors Optimal Decision, 

Inconsistency, Forecast Format, and Optimal Decision by  Inconsistency  

Effect Odds Ratio 95% CI p 

LL UL 

Forecast Format 0.95 0.82 1.09 .43 

Inconsistency 0.91 0.86 0.96 .001 

Optimal 18.2 16.83 19.68 <.001 

Decision 

Optimal 1.68 1.59 1.77 <.001 

Decision x 

Inconsistency 

Table F4. Exploratory Model IV with predictors Forecast Format, Inconsistency, Optimal 

Decision by Deterministic Forecast Format, and Optimal Decision by Probabilistic Forecast 

Format, was conducted to test whether the association between Optimal Decision and Closure 

Decisions differed across Forecast Format.     

Effect Odds Ratio 95% CI p 

LL UL 

Forecast Format 0.64 0.54 0.75 <.001 

Inconsistency 1.44 1.42 1.46 <.001 

Optimal 22.70 21.20 24.40 <.001 

Decision x 

Deterministic 

Optimal 44.20 39.40 49.50 <.001 

Decision x 

Probabilistic 
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Appendix G: Linear Mixed Model Regression Tables for Expected Value, Uncertainty 

Range, and Best Estimate 

Table G1. Regression table for Expected Value  

      

     

    

     

 

 

    

Predictor B 95% CI (B) t p 

(Intercept) 3.33 [3.11,3.65] 24.25 <.001 

Forecast Format -0.28 [-0.67,0.11] 1.39 0.17 

Inconsistency 0.62 [0.61,0.63] 88.23 <.001 

Inconsistency x 0.09 [0.07,0.11] 10.37 <.001 

Forecast Format 

Table G2. Regression table for Best Estimate 

Predictor B 95% CI (B) t p 

(Intercept) 0.16 [0.05,0.27] 2.86 <.01 

Forecast Format -0.06 [-0.21,0.10] 0.72 .47 

Forecast 2 Value 0.87 [0.86,0.87] 322.72 <.001 

Inconsistency -0.03 [-0.04,-0.02] 5.91 <.001 

Forecast 1 Value -0.08 [0.07,0.08] 30.11 <.001 

Inconsistency x 0.01 [0.00,0.02] 1.97 .049 

Forecast Format 

Table G3. Regression table for Uncertainty Range 

Predictor B 95% CI (B) t p 

(Intercept) 3.33 [3.11,3.65] 24.25 <.001 
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Forecast Format -0.28 [-0.67,0.11] 1.39 0.17 

Inconsistency 0.62 [0.61,0.63] 88.23 <.001 

Inconsistency x 0.09 [0.07,0.11] 10.37 <.001 

Forecast Format 
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